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Summary. Various methods exist for the derivation of 
restricted and/or desired gains selection indexes, and 
their use in applied breeding has been advocated. It is 
shown that there exists a set of implied linear economic 
weights for all constrained indexes and their derivation is 
given. Where economic weights are linear and known, a 
standard selection index is, by definition, optimal and 
thus a constrained index will usually be suboptimal. It is 
argued that economic weights can always be estimated 
and that the effects of uncertain weights can be examined 
by sensitivity analysis. If economic weights are nonlinear, 
use of the first order (linear) economic weights or a 
derived linear index, using previously described methods, 
will give very close to optimum economic selection re- 
sponses. Examples from the literature indicate that severe 
losses of potential economic gain can possibly occur 
through use of a constrained index. It is concluded that 
constrained indexes should be avoided for economic ge- 
netic selection. 
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Introduction 

In animal and plant production it is usual that several or 
many traits contribute to overall economic merit. For 
genetic selection, information on several traits can be 
combined by a special use of Fisher's (1936) discriminant 
function, as proposed by Smith (1936) and Hazel (1943). 
The resulting selection index can have any desired objec- 
tive. But when the objective is maximum improvement in 
economic merit, the index can appropriately be called an 
economic selection index. When genetic variation is en- 

tirely additive and the economic weights of traits contrib- 
uting to economic merit are linear functions of their ge- 
netic value, the economic selection index is, by definition, 
optimal. 

Several authors have demonstrated that it is possible 
to construct restricted selection indexes and desired gains 
selection indexes (Kempthorne and Nordskog 1959; 
Cunningham et al. 1970; Yamada et al. 1975; Harville 
1975; Brascamp 1984). In restricted selection indexes, ge- 
netic gain in one or more of the traits of interest is restrict- 
ed to zero. In desired gains indexes, the relative genetic 
change in two or more traits is predetermined. The equiv- 
alence of various methodologies to achieve these ends has 
recently been demonstrated by Itoh and Yamada (1987). 

There is a fundamental difference in philosophy be- 
tween economic selection indexes and restricted or de- 
sired gains indexes. With economic selection indexes, the 
response to selection is entirely determined by the eco- 
nomic weights of the traits contributing to economic 
merit, the phenotypic covariances among the traits in the 
index, and the genetic covariances among the traits in the 
index and the traits of economic interest. With restricted 
and desired gains indexes, there are predetermined con- 
straints on genetic response of some traits that partially 
or completely override the response determined by their 
economic weights. In the case of restricted indexes, eco- 
nomic weights of restricted traits are not defined. 

Justification for the use of restricted or desired gains 
indexes has been either that some traits are considered 
already to be at an economic optimum or that economic 
weights are difficult or impossible to determine. However, 
in the former case economic weights at the optimum are 
by definition zero. It would then be appropriate to use an 
economic weight of zero or, if there is marked nonlinear- 
ity in the economic weights, to use a nonlinear selection 
index (e.g., Wilton et al. 1968; Goddard 1983). In the 
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la t ter  case, it is difficult to imagine  s i tuat ions in which 

economic  weights  wou ld  be entirely unknown.  Impl ic i t  in 

any breeder ' s  def ini t ion of desired response is an  under ly-  

ing assumpt ion  abou t  the economic  values of the traits. 

However ,  those e c o n o m i c  values  are often no t  explicit ly 

stated. 

This  paper  shows tha t  there is a un ique  implici t  set of 

e conomic  weights  under ly ing  mos t  restr ic ted and  desired 

gains selection indexes. By tak ing  an example  of  a re- 

s tr icted and desired gains index f rom the l i terature,  it is 

demons t r a t ed  that  the failure to explicit ly derive econom-  

ic weights  can  potent ia l ly  lead to severe losses in response  

to selection for overal l  economic  merit .  

Materials and methods 

Derivation of implied economic weights 

A standard selection index notation is used. P is an n x n pheno- 
typic covariance matrix among the n variables in the selection 
index. G is an n • m genotypic covariance matrix among the n 
variables in the selection index and the m traits in the aggregate 
genotype, in this case economic merit, g is an m x 1 vector of 
additive genotypic values for the traits in the aggregate genotype 
and v is the vector of economic weights for those traits, x is an 
n • 1 vector of variables in the selection index and b, the vector 
of selection index coefficients. The optimum set of selection index 
coefficients is that which maximizes the correlation (rm) between 
the selection index (I = b' x) and the aggregate genotype (H = v'g). 
And it can be shown (Hazel 1943) that maximum r m is achieved 
when 

P b = G v .  (1) 

Thus, given P, G, and v, b can be derived as 

b = p - i  Gv. 

More complex derivations of b can be found for various forms 
of restricted and desired gains indexes (Brascamp 1984; Itoh and 
Yamada 1987). 

If the selection index coefficients, b, are known, the econom- 
ic weights, v, which would have led to these coefficients in a 
standard selection index derivation, can be derived from Eq. (t) 
as 

G ' G v = G ' P b ,  

hence, 

v = ( G ' G )  -1 G' Pb 

when n_> m. When m > n, unique solutions can be found only if 
m - n  or more values of v are predetermined. Solutions can then 
be achieved by adding a matrix of Lagrange multipliers (L) to G 
and a vector of predetermined economic weights (a) to Pb, so 
that, 

To illustrate, consider an example where there are only two 
variables in the index and four in the aggregate genotype, but the 
economic values of the first and third traits in the aggregate 
genotype are known to be a~ and a 3 . Then the order of G is 2 x 4, 

0 0 and a = 
L =  0 1 a 3 

The solutions are then v 1 = a~, v 3 = a3, with the solutions for v 2 
and v 4 being the implied economic weights given the predeter- 
mined weights v~ and v a . 

Examples from the literature 

Examples of constrained indexes found in the literature are usu- 
ally presented as plausible working examples and may not have 
been intended as definitive indexes to be applied in practice. 
Nevertheless, it is instructive to examine an example in detail, 
not to criticize the specific index presented but to examine the 
potential for economic losses when applying a constrained in- 
dex. The index chosen was that presented by Yamada et al. 
(1975) for improvement of an egg laying stock of chickens. The 
traits chosen for improvement were egg production rate over 
500 days (EP) in percent eggs per day, feed conversion efficiency 
(FC) measured in 0.1 units of feed weight divided by yield of egg 
weight, and individual egg weight (EW) in grams. The con- 
straints were to increase EP from 65% to 73% and reduce FC 
from 2.8 to 2.5 while holding egg weight constant at 58 g. The 
variables in the selection index were EW, adult body weight 
(BW) and the rate of egg production based on the individual plus 
seven full sisters' average production over 275 days (EF). Pheno- 
typic and genetic parameters were 

EF BW 

- 1.533 28.8 

25.625 - 1.125 

EW 

EW [ 1 6  

P = EF 1.533 

BW 28.8 

and 

EP 

-1.125 324 

FC EW 

E W [ - 7 . 5 8 9 5  -1.0119 8 1 
G = E F  / 11.7116 -1.3778 2.6143 

BW L 0 -3.0547 12.8798] 

Note that G in the present notation is the genetic covariance 
matrix among the actual records used in the selection index and 
the traits in the aggregate genotype. Yamada et al. (1975) used G 
to denote genetic covariances if selection index variables were 
recorded only on the candidate for selection. Thus, G here is 
equivalent to G 'R  in Yamada et al.'s notation, where R is an 
n x n diagonal matrix of Wright's coefficients of genetic relation- 
ship between the actual records used in the index and the candi- 
date for selection. G presented here does notcorrespond exactly 
to G' R of Yamada et al. (1975) because the coefficient of relation- 
ship they used for EF did not take into account the inclusion of 
the candidate for selection in the full-sib mean.It is assumed that 
the candidate was intended to be included because this was 
certainly assumed in their derivation of P. The constraints in 
terms of relative desired gains of EP, FC, and EW were 8 : - 3 : 0. 

The P, G, and G' P -  1 G matrixes all had only positive eigen- 
values. Selection index coefficients, b, were obtained for the con- 
strained index, using a special case of the generalized method of 
Itoh and Yamada (1987), as 

b=q5 p - 1 G ( G , p - 1  G)- I  k, (4) 

where ~b is a scaling factor, 

q5 = v ' k / k ' ( G ' P  -~ G) -a k, 

and v is a vector of prior, in this case arbitrary, economic 
weights, 

1 v I 01and [il 
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Table 1. Genetic change resulting from one s.d. selection on each of three indexes and economic gain if one of two explicitly derived 
sets of economic weights are correct 

Index" Economic weights Predicted genetic change b Proportion of 
maximum eco- 
nomic gain if 

VEp VFC VEw EP FC EW a true b true 

a 0.6029 - 1.6733 -0.81 t I 3.007 0.080 - 1.441 1.0 0.82 
b 0.6029 - 1.6733 0.000 3.016 -0.135 -0.366 0.82 1.0 
c - 0.0025 c - t.6733 c - 0.2525 c 0.909 - 0.341 0.0 0.39 0.55 
d 0.0892 ~ -1.4287 ~ 0.0 1.108 -0.415 0.893 0.22 0.67 
e 0.6029 -1.6733 0.1809 ~ 2.799 -0.193 0.0 0.71 0.98 

a a and b are standard indexes using expficit economic weights and c, d, and e are constrained indexes, c has constraints on EP, EC, 
and EW as given in the text; d has constraints on EP and FC but no restriction on EW but with the economic value of EW set to zero; 
e has no constraints on EP and FC, but EW is restricted to zero genetic change 
b Genetic change resulting from a selection intensity of one standard deviation on the index. Units are %, 0. l units of feed weight over 
egg weight, and g for EP, FC, and EW 
c Indicates implicit economic weight derived as given in the text; other economic weights are explicitly used in the construction of the 
index 

This gave b' = [0.0251 0.0603 - 0.0278]. The relative values of 
b differ slightly from those of Yamada et al. (1975) due to the 
errors in their G' R. Note that in the present case, v could have 
been found directly from Eqs. (4) and (2) as 

v=~b G ( G ' P  -1 G) -1 k. (5) 

However, if Eq. (2) is used, there is no requirement to know the 
method of deriving b. The implied economic weights for this 
example, derived using either Eq. (2) or (5), are 

v '=  [-0.0025 - 1.6734 -0.2525]. 

As a result of the imposed constraints, the implied economic 
weights gave essentially no value to EP, a high negative value to 
FC, and a modest negative value to EW. 

These implicit economic weights can be compared to esti- 
mates of economic weights derived explicitly for a simple egg 
pi:oduction enterprise. The derivation is summarized in Ap- 
pendix 1. The principal assumptions are that: (1) 60% of total 
costs are feed costs, the remainder being management costs allo- 
cated per bird; (2) discounting and costs of rearing can be ig- 
nored because all three traits in the aggregate genotype are 
expressed at the same time; and (3) returns equal 1.1 times costs 
before genetic change. A standard period of 365 days of produc- 
tion is considered. Economic values are the marginal change in 
profit per unit genetic change in the trait, all other traits in the 
aggregate genotype remaining constant. By setting the economic 
value of FC (Vvc) to - 1.6734, as found above, VEp and VEW can 
be found after deriving the implied cost per kg feed (given VFc). 
If it is assumed that the price of eggs is not affected by their 
weight, the explicitly derived economic weights, VEV, VEc, and 
VEW, are 0.6029, --1,6733, and --0.8111. In the present case, VEp 
is positive because although FC remains constant, more revenue 
is generated at a fixed management cost. VEw has a large negative 
value because extra feed is required to produce more egg weight. 
An alternative hypothesis might be that changes in egg price 
would match the marginal change in feed costs, in which case 
VEw would be 0.0. VEw would also be zero if egg weight were at 
an economic optimum. On either assumption about VEW , the 
explicit economic weights differ considerably from the implied 
economic weights. 

Table 1 presents the economic genetic change resulting from 
each of the two alternative explicit sets of economic weights 
(a denotes egg weight independent of price per egg and b denotes 

V~w = 0) and that from the constrained index (c), assuming that 
the explicit weights are correct. If economic weights a or b are 
correct, then use of the constrained index provides only 39% or 
55% of the potential economic gain. In both cases the con- 
strained index is severely suboptimal. 

The effect of dropping the restriction of zero change in EW 
or of dropping the constraint of defined proportional gains in 
EQ and FC is examined in examples d and e in Table 1. In case d, 
the economic weight of EW (VEw) is set to zero, which is its 
marginal economic value if EW is at an economic optimum. If 
VEw is actually zero, a single restriction on EW causes only 2% 
loss in economic gain (column "b true", row e versus row b of 
Table 1), while the constraint of proportional gain in EP and FC 
of 8 : - 3  causes a 33% loss in economic gain (column "b true", 
row d versus row b of Table 1). Although the restriction on EW 
has almost no effect on its own, it further reduces economic gain 
by 12% if imposed on top of the joint constraint on EP and FC 
(column "b true", row d versus row c, Table 1). Thus, constraints 
are not necessarily additive but, as in this case, may interact. 

Constrained indexes c, d, or e cause greater losses in eco- 
nomic gain if a is true than if b is true. This result may not seem 
surprising since b sets VEw to zero, consistent with the concept 
that EW is at an economic optimum, which belief presumably 
would prompt the imposition of a restriction of no change in 
EW. However, this situation will not always be true. In the 
present case, if the true value of V~w was small but positive and 
VEe and VFC remained as presently defined, then index c would 
be more efficient when judged against a than against b. 

Other examples in the literature were examined, but few 
provided sufficient information to allow a realistic set of explicit 
economic weights to be derived. One exception is another poul- 
try example provided by Itoh and Yamada (1987). However, in 
that example both the P and C (matrix of genetic covariances 
among traits in the aggregate genotype; equivalent to G in the 
example given) matrixes had negative eigenvalues, so that little 
meaning could be attached to the answers obtained. 

Discussion 

It  is no t  the in tent ion  of  this paper  to call in to  ques t ion  

the var ious  me thods  p r o p o s e d  for der iving cons t ra ined  
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selection indexes. Optimal procedures and the relation- 
ships between different methods have been well described 
by Brascamp (1984) Itoh and Yamada (1987). The ques- 
tion is whether constrained indexes should have a role in 
applied breeding. Where economic merit is not a consid- 
eration, the answer may well be yes. In animal species 
kept solely for human pleasure or companionship, one 
may wish to maintain or enhance certain characteristics 
of a perticular breed to conform to the breed standards. 
For example, with pit bull terriers it might be deemed 
that the breed should maintain a specific ratio of ugliness 
to vicious temperament, and a constrained index could 
incorporate this requirement along with any other breed- 
ing objectives deemed appropriate. Constrained indexes 
are also appropriate in experiments where a predeter- 
mined biological change is desired in order to examine 
the consequences of such change. An example of such 
usage was Eisen's (1977) selection of mice for increased 
postweaning gain while holding feed intake constant, in 
order to examine the effects on efficiency of growth and 
other related traits. 

Where the objective of breeding is the improvement of 
economic merit of the species, breed, or variety con- 
cerned, it is difficult to find convincing arguments for the 
use of a constrained index. As shown here, most con- 
strained indexes have an implied and unique set of linear 
economic weights. Where the assumptions of linearity are 
correct, a linear selection index will, by definition, pro- 
mote maximum improvement of economic merit. The 
potential loss of economic gain through use of a con- 
strained index is clearly demonstrated in the example 
given for egg-laying poultry, where the constrained index 
made only 39% and 55% of the economic gain of two 
alternative unconstrained indexes based on explicit eco- 
nomic weights. It needs to be reiterated that in this case 
it is not intended to state categorically that the explicit 
economic weights are correct for this situation; they are 
merely reasonable estimates for the situation described. 
Neither is it intended to imply that Yamada et al. (1975) 
advocated use of their example of a constrained index in 
practice. Nevertheless, there is considerable discordance 
between the implied economic weights from what might 
seem a reasonable constrained index and reasonable esti- 
mates of actual economic weights. And there is clearly the 
potential for large losses in economic gain through use of 
a constrained index. 

In the literature on constrained indexes, justification 
for the use of such indexes is singularly lacking. Brascamp 
(1984) reviewed five instances where the justification giv- 
en was a desire to see no change in a particular trait 
because such change was perceived as detrimental. In a 
sixth example the desire was to promote genetic changes 
"more in harmony with" increase in another trait that 
was not included in the aggregate genotype. Pesek and 
Baker (1969) justified their use of such indexes with the 

statement that "few breeders are prepared to assign rela- 
tive economic weights to traits but most would be willing 
to specify the amount of gain they would like to see in 
each trait . . ." .  It seems reasonable to suppose that the 
justification for constrained indexes is that economic val- 
ues of some traits are difficult to estimate, uncertain or 
variable over time, or that the trait is at an economic 
optimum. 

It is difficult to imagine a situation where economic 
weights cannot be estimated at all. Perhaps the most 
difficult position is that of a breeding company that must 
assess both the economic production potential of a stock 
and its marketability in relation to the stock of competing 
companies. But even here methods exist to quantify eco- 
nomic values, as recently discussed by de Vries (1989). 
And, while it is accepted that economic values may vary 
over time, it is usually possible to identify likely long-term 
values and potential ranges to those values. Such values 
should then be used in a selection index, and the effects 
of varying the economic weights of different traits can be 
examined. Often, selection indexes are insensitive to 
rather large changes in economic weights. The problem 
with a constrained index is that it can easily imply an 
economic weight well outside any reasonable range. The 
implied essentially zero economic weight for egg produc- 
tion in the example of Yamada et al. (1975) is a case in 
point. While there may be some uncertainty as to the true 
economic value, it is very difficult to imagine a situation 
where increased egg production per bird per year has no 
value. 

If some traits are already at an optimum, economic 
weights for such traits are nonlinear. However, unless the 
nonlinearity is extreme, nonlinearity will cause second- 
order effects of minor importance in relation to the rates 
of genetic gain expected. In such cases a linear selection 
index will be very close to optimum. The appropriate 
economic weight for a trait at an optimum is zero, and if 
the population moves away from the optimum following 
selection, the economic weight should be continuously 
adjusted to equal the tangent to the profit curve at the 
population mean for that trait. If nonlinearity is marked, 
then construction of a nonlinear index (e.g., Wilton et al. 
1968) or the appropriate linear index taking into account 
nonlinear weights (Goddard 1983) is an optimum or very 
close to optimum procedure. These close-to-optimum 
procedures allow for genetic change in the mean of a trait 
currently at its own economic optimum to occur. Such 
change occurs if dictated by its economic value in relation 
to other traits and the genetic and phenotypic covari- 
ances among those traits. Arbitrarily constraining that 
trait to zero genetic change will therefore be suboptimal. 
In Yamada et al.'s (1975) example, the constraint of zero 
change in egg weight caused less than 1% loss in econom- 
ic gain when no other constraints were applied, but 
caused a 15% loss in the presence of constraints on EP 



and FC.  Thus,  even if a single cons t ra in t  causes little loss 

in e c o n o m i c  genetic  gain, it m a y  be severely de t r imenta l  

in the presence of  o ther  constraints .  

It  is conc luded  that  cons t ra ined  indexes are always 

s u b o p t i m u m  economica l ly  and can cause severe losses in 

po ten t ia l  e conomic  gain. E c o n o m i c  values, if no t  k n o w n  

exactly, can be es t imated  and given reasonable  ranges. 

These  est imates  can be used to ob ta in  o p t i m u m  or  close- 

t o - o p t i m u m  selection indexes for e conomic  genetic  gain. 

If  e conomic  weights  are uncer ta in ,  the effect of  set t ing 

e c o n o m i c  weights  to ex t reme values can be examined,  

and the index modi f ied  if necessary. 

Appendix 1 

Derivation of economic weights for poultry breeding example 
from Yamada et al. (1975) 

Basis. Consider a time period of 365 days and evaluate values 
per bird. Interest is in marginal economic value of genetic 
change; therefore, costs of rearing and discounting can be ig- 
nored. This will not affect relative values, since all traits are 
expressed during the same period. 

Assume 60% of costs are feed costs (increasing linearly with 
weight of eggs produced) and the remainder are management 
costs allocated on a per bird basis. 

Population currently has an average egg production rate of 
0.65 and average egg weight of 0.058 kg. 

Derive a standard cost o f  feed. As a standard, use V~c= 1.6734 
per 0.1 unit, the implied economic weight for Yamada et al.'s 
(1975) index. 

Total weight of eggs per year = 365 x 0.65 x 0.058 = 13.7605 kg 
At FC of 2.8, expected feed intake = 13.7605 x 2.8 

= 38.5294 kg 

A 0.1 reduction in FC would reduce feed intake by 

38.5294 x 2.7= 1.37605 kg 
2.8 

Since Vvc= 1.6733 per 0.1 unit, implied feed cost is 

1.6734 1 22 ̂ ~'k i - ~ - ~ =  . u~/ g 

Derive returns per egg. Total feed requirements cost 
= 365 x 0.65 x 0.058 x 2.8 x 1.2209 
= 47.042 per bird per year 

Total costs, if 60% costs are due to feed, =47.042 x (0.6 +0.4) 
0.6 

= 78.403 per bird 

Total cost per egg _ 78.403 per year 
365 x 0.65 

=0.3305 
If returns = 1.1 x costs, returns per egg = 1.1 x 0.3305 

=0.3636 

805 

Derive the marginal value of increased EP, VEp. One percent 
increase in EP causes increased feed costs of 
365 x 0.01 x 0.058 x 2.8 x 1.2209=0.7237 per bird per year and 
increased returns of 365 x 0.01 x 0.3636 = 1.3266 per year. 
Therefore, increased profit = VEp= 1.3266-0.7237 

= 0.6029 per % 

Derive the marginal value of increased egg weight, V~w. Marginal 
costs of increased egg weight are all feed costs. 
365 x 0.65 x 0.001 x 2.8 x 1.2209--0.8111 per g per bird per year 

Therefore, if the price of eggs is unaffected by weight 
Vzw = -0.8111 per g. 

But, if price differential is equal to the costs of producing larger 
eggs, Vzw = 0.0 per g. 
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